Subpixel land-cover classification for improved urban area estimates using Landsat

نویسندگان

  • Andrew MacLachlan
  • Gareth Roberts
  • Eloise Biggs
  • Bryan Boruff
چکیده

Urban areas are Earth’s fastest growing land use that impact hydrological and ecological systems and the surface energy balance. The identification and extraction of accurate spatial information relating to urban areas is essential for future sustainable city planning owing to its importance within global environmental change and human–environment interactions. However, monitoring urban expansion using medium resolution (30–250 m) imagery remains challenging due to the variety of surface materials that contribute to measured reflectance resulting in spectrally mixed pixels. This research integrates high spatial resolution orthophotos and Landsat imagery to identify differences across a range of diverse urban subsets within the rapidly expanding Perth Metropolitan Region (PMR), Western Australia. Results indicate that calibrating Landsat-derived subpixel land-cover estimates with correction values (calculated from spatially explicit comparisons of subpixel Landsat values to classified high-resolution data which accounts for over [under] estimations of Landsat) reduces moderate resolution urban area over (under) estimates by on an average 55.08% for the PMR. This approach can be applied to other urban areas globally through use of frequently available and/or low-cost high spatial resolution imagery (e.g. using Google Earth). This will improve urban growth estimations to helpmonitor andmeasure change whilst providing metrics to facilitate sustainable urban development targets within cities around the world. ARTICLE HISTORY Received 28 February 2017 Accepted 13 June 2017

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Landsat Etm Sub-pixel Analysis of Urban Landscape Using Fuzzy C- Means Clustering and Differentiated Impervious Surface Classes

Fuzzy c-means clustering (FCM) algorithm has been used to analyze the sub-pixel composition of medium spatialresolution satellite image (i.e., Landsat ETM). As urban landscape shows complex patterns of land cover composition and setting, it is difficult to have high accuracy in estimating urban land cover composition from Landsat image because of the mixed pixel problem. This study evaluates th...

متن کامل

Subpixel Urban Land Cover Estimation: Comparing Cubist, Random Forests, and Support Vector Regression

Three machine learning subpixel estimation methods (Cubist, Random Forests, and support vector regression) were applied to estimate urban cover. Urban forest canopy cover and impervious surface cover were estimated from Landsat-7 ETM imagery using a higher resolution cover map resampled to 30 m as training and reference data. Three different band combinations (reflectance, tasseled cap, and bot...

متن کامل

Evaluation of Land Cover Changes Ysing Remote Sensing Technique (Case study: Hableh Rood Subwatershed of Shahrabad Basin)

The growing population and increasing socio-economic necessities creates a pressure on land use/land cover. Nowadays, land use change detection using remote sensing data provides quantitative and timely information for management and evaluation of natural resources. This study investigates the land use changes in part of Hableh Rood Watershed of Iran using Landsat 7 and 8 (Sensor ETM+ and OLI) ...

متن کامل

Comparing the Capability of Sentinel 2 and Landsat 8 Satellite Imagery in Land Use and Land Cover Mapping Using Pixel-based and Object-based Classification Methods

Introduction: Having accurate and up-to-date information on the status of land use and land cover change is a key point to protecting natural resources, sustainable agriculture management and urban development. Preparing the land cover and land use maps with traditional methods is usually time and cost consuming. Nowadays satellite imagery provides the possibility to prepare these maps in less ...

متن کامل

Cropland distributions from temporal unmixing of MODIS data

Knowledge of the distribution of crop types is important for land management and trade decisions, and is needed to constrain remotely sensed estimates of variables, such as crop stress and productivity. The Moderate Resolution Imaging Spectroradiometer (MODIS) offers a unique combination of spectral, temporal, and spatial resolution compared to previous global sensors, making it a good candidat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017